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Abstract 

This study evaluates the Grid-based Cellular Automaton Algorithm (GC2A) preprocessing 
algorithm, enhancing accuracy and robustness in image processing and flood detection 
applications. GC2A demonstrated superior performance in comparison to baseline algorithms, 
achieving an accuracy of 95%, significantly higher than mean (75%), median (80%), and PCA 
(82%). Additionally, performance metrics such as Peak Signal-to-Noise Ratio (PSNR) and 
Structural Similarity Index (SSIM) confirmed its effectiveness, with scores of 92.5 and 93, 
respectively. In terms of flood detection, GC2A achieved a true positive rate of 90% under 
optimized thresholds, and qualitative assessments validated its reliability in identifying flooded 
areas. A sensitivity analysis further highlighted the correlation between elevation thresholds and 
detection rates, emphasizing the importance of parameter selection for optimal results. The 
integration of storm analysis enriched the understanding of flood dynamics, demonstrating how 
storm intensity and duration impact soil saturation and flood risk. Increased storm intensity 
correlates with heightened flood risk, while soil saturation exhibited similar trends. This research 
underscores the necessity for algorithms that account for environmental variables, particularly 
in disaster response scenarios. The findings confirm that GC2A effectively adapts to varying 
conditions, establishing it as a valuable tool for environmental monitoring. Future research 
should focus on refining the GC2A algorithm and exploring its applicability across different 
domains, ensuring improved accuracy and reliability in critical applications related to flood 
detection and disaster management. 
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1. Introduction 

1.1 Background 

Flooding is one of the most destructive natural disasters, affecting millions of people annually 

(1,2). It leads to significant loss of life, damage to infrastructure, and economic disruption (3). 

Accurate flood prediction and timely response are crucial for mitigating these impacts. Cellular 

automata (CA), a powerful modeling technique, have been widely used for simulating complex 

phenomena, including flood dynamics (4). In a flood scenario, the flow of water across different 

regions can be modeled using grids that evolve based on local rules and environmental conditions, 

such as elevation and soil saturation. With the advent of satellite imaging and IoT-enabled 

monitoring systems, data-driven approaches to flood detection and management are becoming 

more feasible and efficient. Combining elevation data, soil saturation levels, and real-time satellite 

imagery can enhance the accuracy of flood prediction models. 

1.2 Challenges 

Flood modeling presents several challenges: 

1. Data Accuracy: The accuracy of elevation data and soil saturation levels is critical for 

reliable predictions. Inconsistent or outdated data can lead to incorrect flood forecasts. 

2. Resolution and Scale: Managing large datasets from high-resolution satellite images and 

extensive grid-based models requires significant computational resources, especially for 

real-time applications. 

3. Dynamic Conditions: Flood behavior changes rapidly due to factors like rainfall intensity, 

terrain morphology, and water flow patterns. Capturing these dynamics in a timely manner 

is challenging. 

4. Uncertainty in Prediction: Uncertainties in weather forecasts, elevation data 

inaccuracies, and unpredictable human activities can complicate flood prediction. 

5. Interfacing Models and Imagery: Effectively integrating flood models with real-time 

satellite imagery for visualization and interpretation adds another layer of complexity to 

the design of such systems (5,6). 

1.3 Contribution 

This paper introduces the Grid-based Cellular Automaton Algorithm (GC2A) to tested flood 

dynamics based on local elevation and soil saturation data. The algorithm also integrates satellite 

imagery to visually annotate flooded areas, providing an enhanced real-time tool for flood 

prediction and response. The main contributions include: 
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• Development of an efficient, grid-based algorithm for real-time flood detection. 

• Integration of cellular automata with real-time satellite imagery for improved flood 

monitoring. 

• A visualization method for marking and analyzing flooded regions on satellite images. 

1.4 Objective 

The primary objective of this work is to: 

• Develop a flood detection algorithm using elevation and soil saturation data. 

• Integrate satellite imagery to provide real-time flood visualizations. 

• Optimize computational performance to ensure timely flood prediction and response. 

• Enhance the accuracy and efficiency of flood grid generation. 

 1.5 Paper Organization 

The paper is organized as follows: Section 2 discusses the related work in flood modeling and 

cellular automata. Section 3 introduces the design and implementation of the GC2A algorithm. 

Section 4 presents experimental results and performance evaluations. Section 5 concludes the 

paper with potential future work. 

2. Review of Literature 

The integration of advanced data preprocessing techniques for storm and flood prediction has been 

a focal point of recent research. Several studies emphasize the importance of feature selection and 

deep learning models to enhance prediction accuracy. 

For instance, Garg et al. (2024) proposed a hybrid deep learning network that incorporates feature 

selection, leading to improved flood prediction accuracy. Their findings indicate that such 
approaches significantly outperform traditional models, achieving accuracy rates as high as 95 

%ly, Guo et al. (2024) developed a VMD–CNN–BiLSTM model, showcasing the efficacy of 

combined methodologies in daily runoff predictions. Hu et further explored the integration of 

LSTM and reduced-order models to enhance flood prediction capabilities, demonstrating 

promising results . 

In the domain reprocessing, Kuriqi and Hysa (2024) highlighted the necessity of contextual feature 

extraction in flood risk mitigation efforts, emphasizing the role of image clarity and preprocessing 

techniques. Mann and Gupta (2024) utp learning approaches specifically for rainfall-induced flood 

predictions, reinforcing the significance of advanced algorithms. The comparative analysis across 

tes illustrates a clear trend: advanced preprocessing frameworks, such as the Advanced Multi-

Dimensional Preprocessing Framework (GC2A), are pivotal for refining data integrity and 

enhancing the performance of predictive models. 
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2.1 Published article with techniques vs. month 

The figure 1 illustrates the effectiveness of three preprocessing techniques—mean imputation, 

outlier removal, and image preprocessing-over the course of a year. The monthly trends 

demonstrate performance improvements achieved through these methods, highlighting their role 

in enhancing data quality and contributing to more accurate analysis outcomes. 

                          

Figure 1: Effectiveness of Various Preprocessing Techniques over the Months.  

(Figure 2) The GC2A architecture first preprocesses input data to enhance quality, followed by 

kernel prediction, which analyzes affected regions for flood detection and provides comprehensive 

output results for further assessment. 

 

Figure 2: System Architecture for Flood Detection and Analysis 
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3. Algorithm Design 

 

Grid-based Cellular Automaton Algorithm) GC2A 

 

Input: Elevation and soil saturation data, thresholds, satellite image path 

Output: Flood grid, annotated satellite image 

1. Initialize Variables: 

• Read data from CSV file. 

• Define grid dimensions 𝑚 × 𝑛. 

• Set elevation and saturation thresholds. 

2. Initialize Flood Grid: 

• Create grid 𝐺 of size 𝑚 × 𝑛 initialized to zero. 

• For each cell (𝑖, 𝑗) in 𝐺: 

o If elevation[𝑖][𝑗] < threshold AND soil_saturation[𝑖][𝑗] > threshold, then 

𝐺[𝑖][𝑗] ← 1 (Flooded). 

3. Process Satellite Image: 

• Load and convert the image to grayscale. 

• Apply binary thresholding. 

• For each pixel (𝑖, 𝑗): 

o If the pixel indicates flooding, store flooded coordinates (𝑖, 𝑗). 

4. Mark Flooded Areas: 

• Copy the original image. 

• For each flooded coordinate (𝑖, 𝑗): 

o If (𝑖, 𝑗) is within bounds, mark the pixel in dark yellow. 

5. Run GC2A Algorithm: 

• Set iterations 𝑇. 

• For 𝑡 = 0 to 𝑇 − 1: 

o Create a temporary grid 𝐺temp. 
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o For each cell (𝑖, 𝑗) in 𝐺: 

▪ Count flooded neighbors. 

▪ If flooded neighbors > 0, then 𝐺temp[𝑖][𝑗] ← 1. 

o Update 𝐺 with 𝐺temp. 

6. Results: 

• Generate visualization of flooded grid 𝐺. 

• Display original and marked images side by side. 

 

4. Methods 

The GC2A (Grid-based Cellular Automaton Algorithm) is a mathematical model used for 

detecting and analyzing flood areas based on elevation and soil saturation data(1,2,3,4,5,6,7,8). It 

employs cellular automata principles to simulate flood propagation dynamics. 

4.1 Input Data Representation 

• Elevation Data Matrix: 

𝐸 ∈ ℝ𝑚×𝑛 where

𝐸[𝑖][𝑗]  represents the elevation at cell (𝑖, 𝑗).
 

• Soil Saturation Data Matrix: 

𝑆 ∈ ℝ𝑚×𝑛 where

𝑆[𝑖][𝑗]  represents the soil saturation at cell (𝑖, 𝑗).
 

• Thresholds: 

𝑇𝐸 ∈ ℝ (elevation threshold) 

𝑇𝑆 ∈ ℝ (soil saturation threshold) 

4.2 Flood Grid Initialization 

• Flood Grid: 

𝐺 ∈ {0,1}𝑚×𝑛  where

𝐺[𝑖][𝑗] = 0  (not flooded)

or 𝐺[𝑖][𝑗] = 1  (flooded).

 

• Initialization: 

𝐺[𝑖][𝑗] = 0, ∀(𝑖, 𝑗) ∈ [0,𝑚 − 1] × [0, 𝑛 − 1]. 
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4.3 Flood Detection Condition 

𝐺[𝑖][𝑗] = {
1 if 𝐸[𝑖][𝑗] < 𝑇𝐸 and 𝑆[𝑖][𝑗] > 𝑇𝑆
0 otherwise

 

4.4 Moore Neighborhood Definition 

𝑁(𝑖, 𝑗) = { (𝑖 − 1, 𝑗 − 1),

(𝑖 − 1, 𝑗),
(𝑖 − 1, 𝑗 + 1),
(𝑖, 𝑗 − 1),
(𝑖, 𝑗 + 1),
(𝑖 + 1, 𝑗 − 1),

(𝑖 + 1, 𝑗),

(𝑖 + 1, 𝑗 + 1)}

 

4.5 Count of Flooded Neighbors 

𝐶(𝑖, 𝑗) = ∑ 𝐺
(𝑥,𝑦)∈𝑁(𝑖,𝑗)

[𝑥][𝑦] 

4.6 GC2A Iteration Process 

• Iterative Update: 

𝐺temp[𝑖][𝑗] = {
1 if 𝐶(𝑖, 𝑗) > 0

𝐺[𝑖][𝑗] otherwise
 

• Update Rule: 

𝐺 ← 𝐺temp 

4.7 Flood Propagation Dynamics 

Each cell (𝑖, 𝑗) can become flooded if at least one of its neighbors is flooded, reflecting how water 

spreads from already flooded areas(5,6,7,8). 

5.Storm Analysis 

Incorporating storm analysis, we define additional parameters and conditions to assess the impact 

of storm events on flood propagation: 

5.1 Storm Intensity and Duration 

• Storm Intensity: 

𝐼𝑠 ∈ ℝ (storm intensity) 

• Storm Duration: 
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𝐷𝑠 ∈ ℝ (storm duration in hours) 

5.2 Impact on Soil Saturation 

The soil saturation during a storm can be represented as: 

𝑆′[𝑖][𝑗] = 𝑆[𝑖][𝑗] + 𝑓(𝐼𝑠, 𝐷𝑠)

 where 𝑓 is a function representing

 saturation increase due to rainfall.

 

5.3 Flood Detection Condition 

The revised flood detection condition during a storm is given by: 

𝐺[𝑖][𝑗] = {
1 if 𝐸[𝑖][𝑗] < 𝑇𝐸 and 𝑆′[𝑖][𝑗] > 𝑇𝑆
0 otherwise

 

5.4 Flooded Grid Visualization 

𝑉[𝑖][𝑗] = {
Flooded Color if 𝐺[𝑖][𝑗] = 1

Original Color if 𝐺[𝑖][𝑗] = 0
 

5.5Annotated Satellite Image 

The original satellite image is modified to highlight flooded regions based on 𝐺. 

6 .Output Results 

The final outputs consist of: 

• The flooded grid 𝐺 (Table 1), represented as a binary matrix. 

• An annotated image highlighting flooded areas, which is crucial for decision-making and 

emergency response, showing only the five infected areas. 

                      Table 1: Infected area of elevation and soil saturation data 

Cell Index Elevation (m) Soil Saturation 

0 45 0.3 

1 55 0.6 

2 30 0.8 

3 40 0.5 

4 50 0.4 

The elevation and soil saturation data (Table 2) indicate varied terrain and moisture levels. The 

GC2A grid shows that all cells are flooded, suggesting widespread flooding due to low elevation 

and high soil saturation. Only five regions are identified as infected, as listed below. 
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Table 2 :GC2A Grid Result (Flooded Areas) 

 0 1 2 3 4 

0 1 1 1 1 1 

1 1 1 1 1 1 

2 1 1 1 1 1 

3 1 1 1 1 1 

4 1 1 1 1 1 

 

6.1 Heatmap 

 

Figure 3 :Image data from Indian landscape. Data source: Indian NITI Aayog. 

The heatmap (Figure 3) visually represents flood-prone areas, with darker regions indicating 

higher flood risk. It highlights how low elevation and high soil saturation contribute to widespread 

flooding across the grid. 
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6.2 Flood predicted areas 

 

Figure 4: Image data from Indian landscape. Data source: Indian NITI Aayog. 

The highlighted flood map (Figure 4) visually emphasizes regions prone to flooding based on 

threshold values for elevation and soil saturation. Dark yellow pixels represent flooded areas 

detected by the GC2A algorithm, which propagates flooding based on initial conditions and 

neighboring cell states. This approach enhances accuracy in flood risk identification for predictive 

analysis and disaster mitigation planning. 

7. Summary 

The GC2A model detects flood-prone areas using elevation and soil saturation data, enhanced by 

storm parameters like intensity and duration. By defining thresholds and iterating flood 

propagation dynamics, it generates a flooded grid and visualizations. The results inform decision-

making and emergency responses, improving flood risk identification and disaster mitigation 

strategies. 

8. Result Analysis 

The primary objective of this study is to implement the GC2A for flood detection and analysis 

based on elevation and soil saturation data. This section analyzes the results obtained from the 

algorithm, highlighting the effectiveness of the flood detection process, its sensitivity to input 

parameters, and its applicability in real-world scenarios. 

8.1 Handling Missing Values 

The missing values in the numerical dataset were effectively imputed using the mean of each 

feature. 

Table 3 : Data Before and After Imputation 

Feature Before Imputation After Imputation 

Elevation 150.0 150.0 

Soil Saturation 0.65 0.65 
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Feature Before Imputation After Imputation 

Precipitation NaN 12.5 

Temperature 30.0 30.0 

Wind Speed NaN 15.0 

 

In the GC2A algorithm, missing values were imputed using the mean of each feature (Table 3), 

enhancing data completeness and ensuring accurate analysis. This method preserves trends, 

reducing bias in storm and flood datasets (1,4,5,6). 

 8.2 Outlier Detection and Removal 

Outliers identified based on the defined threshold were systematically removed. 

Table 4 : Data Before and After Outlier Removal 

Original Value After Outlier Removal 

10.0 10.0 

20.0 20.0 

100.0 20.0 

30.0 30.0 

 

In GC2A, outliers were detected and removed (Table 4, preventing skewed analysis. This ensures 

that the data reflects typical patterns, improving both model accuracy and generalization during 

training and testing phases(1,4,5,6). 

8.3 Feature Scaling 

The standardization of numerical features yielded a transformed dataset. 

 

Figure 5: Feature Scaling Example: Before and After Standardization. 

In GC2A, feature scaling via standardization transformed the dataset, as shown in Figure 5. This 

process adjusts numerical values, ensuring that features contribute equally to the model and 

enhancing accuracy (3,4,5,6). 
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8.4 Dimensionality Reduction (Optional) 

Dimensionality reduction techniques ( Principle Component Analysis) reduced the feature space 

while retaining significant variance. 

8.5 Image Data Preprocessing: 

8.5.1 Image Resizing 

All images were resized to uniform dimensions of 224 × 224 pixels (1,2,3,4) using the bilinear 

interpolation algorithm(BIA). This resizing step ensures consistency in image input dimensions, 

reduces computational complexity, and enhances model performance by standardizing feature 

representation. 

 

Figure 6 :Image Resizing: Original vs. Resized Images. Resizing images is essential for ensuring 

consistency, reducing computational load, preserving features, and enhancing model 

performance, making it a critical preprocessing step in machine learning applications. 

8.5.2 Noise Reduction 

The application of a denoising function resulted in visibly cleaner images (1,2,3,4). 
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Figure 7 : Image Noise Reduction: Before and After Denoising. The denoising function effectively 

reduces pixel noise, enhancing image clarity and analysis accuracy, crucial for applications in 

strom and flood imaging Figure  

8.5.3 Feature Enhancement 

Enhanced features improved the representation of critical image attributes(1,2,3,4). 

 

Figure 8 : Feature Enhancement: Original vs. Enhanced Features.In GC2A, feature enhancement 

improved the representation of critical image attributes, as shown in Figure 8. Enhanced features 

provided better contrast and detail, allowing for more accurate image analysis and 

processing.(5,6). 

8.6 Performance comparison with baseline algorithms 

To provide a clearer understanding of the comparative performance of various preprocessing 

algorithms, Table 5 summarizes their characteristics and results. 

 

Table 5 highlights how GC2A addresses weaknesses in traditional preprocessing algorithms. 

GC2A excels in outlier detection, feature preservation, and contextual data augmentation, offering 

improved accuracy and deeper feature extraction(1,4,5,6). 
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Figure 9 : Comparative Model Accuracy across Different Preprocessing Algorithms.  

Figure 9 illustrates the comparative accuracy of different AI models, including Random Forest, 

Support Vector Machine, and Logistic Regression, across preprocessing algorithms. GC2A 

achieves the highest accuracy at 95%, significantly outperforming traditional methods like Mean 

and Median(9,10).. 

8.7 GC2A metrics analysis with baseline algorithm 

The GC2A framework was evaluated using various performance metrics, including PSNR and 

SSIM, to assess the effectiveness of the preprocessing techniques(9,10).. 

Table 6 :Result Analysis for GC2A 

S.No Algorithms PSNR SSIM 

1 GC2A 92.5 93 

2 Gaussian Blur 90.8 91 

3 Median Filtering 90.2 92 

4 Non-local Mean Denoising 89.5 91 

5 Wavelet Denoising 89.1 90 

 

Table 6 highlights GC2A’s superior performance, with the highest PSNR and SSIM, indicating 

improved image quality and structural preservation over Gaussian blur and wavelet denoising 

techniques(1,2,3,4). 

8.8 Flood Detection Results 

The flood detection results are summarized Table 7, showcasing the performance of the GC2A 

algorithm under varying thresholds and storm conditions(5,6,10). 
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8.8.1 Quantitative Metrics 

The performance of the GC2A algorithm was evaluated using standard metrics. As observed Table 

7 , the True Positive Rate increased from 0.85 to 0.90 as the thresholds for elevation and soil 

saturation were adjusted. This indicates a higher sensitivity in detecting flooded areas under more 

stringent conditions, thereby minimizing false positives (5,9,10). 

8.9 Qualitative Assessment 

Figure 10 illustrates the annotated satellite images before and after applying the GC2A algorithm. 

The marked flooded areas correspond closely with actual flood reports, demonstrating the 

algorithm’s reliability. Visual inspection reveals that areas prone to flooding were accurately 

identified, which is critical for emergency response efforts(5,6,7,8,9,10). 

 

Figure 10 :Annotated satellite images showing flooded areas detected by the GC2A algorithm. 

8.10 Sensitivity Analysis 

The robustness of the GC2A algorithm was tested through a sensitivity analysis. Variations in the 

elevation threshold from 4 m to 6 m resulted in significant changes in the flood detection rate, as 

depicted in Figure 11. This finding underscores the importance of carefully selecting input 

parameters to optimize flood detection capabilities (9,10). 
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Figure 11: Sensitivity analysis of the flood detection algorithm based on varying input parameters. 

8.11 Storm Intensity vs. Duration 

Figure 12 shows that as storm duration increases, storm intensity rises non-linearly, suggesting a 

rapid escalation in extreme weather events beyond a threshold duration (8,9,10). 

 

Figure 12 : Storm Intensity vs. Duration 

8.12 Soil saturation vs. Storm duration 

In Figure 13 , soil saturation increases rapidly after 15 hours of storm duration, nearing full 

saturation, which leads to heightened flood risk in affected areas (5,6,7,8,9,10). 
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Figure 13 :Soil Saturation vs. Storm Duration 

8.13 Flood Risk vs. Storm Intensity 

Figure 14 demonstrates that flood risk accelerates significantly after storm intensity exceeds 60%, 

indicating a critical point for emergency flood management interventions (5,6,7,8,9,10). 

 

Figure 14 : Flood Risk vs. Storm Intensity 

9. Discussion 

The results obtained from the performance comparison with baseline algorithms (Table 5) indicate 

that GC2A effectively addresses several weaknesses inherent in traditional preprocessing methods. 

For instance, while simple imputation ignores outliers, GC2A enhances accuracy by incorporating 

outlier detection strategies. The observed model accuracies for various algorithms underline the 

robustness of GC2A in maintaining key data features: GC2A’s accuracy of 95% surpasses the 

accuracies of the mean (75%), median (80%), and PCA (82%) algorithms, suggesting its efficacy 

in preserving essential characteristics of the data. 

In terms of image quality, GC2A achieved a PSNR of 92.5 and an SSIM of 93, reflecting its ability 

to enhance image fidelity and structural integrity compared to alternative methods, such as 
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Gaussian Blur (PSNR: 90.8, SSIM: 91) and Wavelet Denoising (PSNR: 89.1, SSIM: 90). These 

results affirm the superior performance of GC2A in both quantitative and qualitative assessments. 

Flood detection results further validate the efficacy of the GC2A algorithm. The true positive rate 

increased from 85% to 90% when adjusting thresholds for elevation and soil saturation, 

demonstrating heightened sensitivity in detecting flooded areas, thereby reducing false positives. 

The qualitative assessment, supported by annotated satellite images (Figure 10), illustrates that the 

detected areas correspond closely with actual flood reports, underscoring the reliability of GC2A 

in emergency response applications. 

Sensitivity analysis (Figure 11) highlights the impact of parameter selection on flood detection 

rates. The direct relationship between elevation thresholds and detection rates—indicating an 

increase from 85% at 4 m to 94% at 6 m—underscores the importance of carefully choosing input 

parameters to optimize algorithm performance. 

9.1 Analysis of storm 

The analysis of storm intensity, duration, and soil saturation provides crucial insights into flood 

risk management: 

• Storm Intensity and Duration: Longer storms with higher intensities are shown to have 

a more significant impact on both soil saturation and flood risk. The relationship between 

these variables, as visualized in Figure 12, indicates that storms exceeding certain 

thresholds may pose serious flood threats, especially in vulnerable areas with limited water 

absorption capacity. 

• Soil Saturation: As depicted in Figure 13, soil becomes fully saturated as storm intensity 

and duration increase, limiting the ground’s ability to absorb additional rainfall. Once the 

soil reaches full saturation, excess water will contribute directly to surface runoff, 

heightening the probability of flooding in those areas. 

• Flood Risk: The combined effect of storm intensity on flood risk (Figure 14) shows a non-

linear relationship, with the risk increasing substantially after a certain threshold. Effective 

flood management systems should consider this threshold when planning disaster 

prevention and preparedness strategies. 

9.2 Limitations and Future Work 

While the GC2A algorithm shows promising results, limitations include reliance on the quality of 

input data and potential computational inefficiencies in larger datasets. Future research should 

focus on optimizing the algorithm for scalability and integrating additional data sources such as 

real-time rainfall measurements to further improve detection accuracy. 

10. Conclusion 

The GC2A preprocessing algorithm significantly enhances model performance in both image 

processing and flood detection tasks, achieving a superior accuracy of 95 % along with improved 

PSNR and SSIM values. These advancements effectively address the limitations of traditional 

preprocessing techniques. The flood detection results, with a true positive rate of 90 % and strong 
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qualitative assessments, demonstrate the algorithm’s robustness in real-world applications, 

particularly in disaster management. 

The integration of storm analysis further highlights the algorithm’s relevance, as storm intensity 

and duration are shown to directly affect flood propagation. Figures 12, 13, 14 collectively 

illustrate how increasing storm intensity and extended durations significantly elevate soil 

saturation and flood risk. This reinforces the critical role of accurate storm modeling in flood 

detection systems. 

Moreover, sensitivity analysis underscores the importance of optimized parameter selection. 

Minor adjustments in both preprocessing and storm-related thresholds can substantially impact 

detection rates, emphasizing the need for precision. Future research should focus on refining the 

GC2A algorithm and enhancing storm prediction models to improve accuracy and applicability 

across various domains. This approach holds promise for more reliable solutions in disaster 

response, environmental monitoring, and other critical areas. 

Data Availability 

• The CSV dataset, self-tested, is publicly available on GitHub at the following URL. 

https://github.com/Divya-B-ux/flood_strom_GC2A.git. 

• Spatial data from the https://iced.niti.gov.in/climate-and-environment/climate-

variability/rainfallIndian Meteorological Department, including rainfall (2020-2024). 

• Elevation data is available on https://www.mosdac.gov.in/MOSDAC. 

• Soil saturation data can be accessed from https://bhuvan-

app3.nrsc.gov.in/data/download/index.phpBhuvan. 
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