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Abstract

This study evaluates the Grid-based Cellular Automaton Algorithm (GC2A) preprocessing
algorithm, enhancing accuracy and robustness in image processing and flood detection
applications. GC2A demonstrated superior performance in comparison to baseline algorithms,
achieving an accuracy of 95%, significantly higher than mean (75%), median (80%), and PCA
(82%). Additionally, performance metrics such as Peak Signal-to-Noise Ratio (PSNR) and
Structural Similarity Index (SSIM) confirmed its effectiveness, with scores of 92.5 and 93,
respectively. In terms of flood detection, GC2A achieved a true positive rate of 90% under
optimized thresholds, and qualitative assessments validated its reliability in identifying flooded
areas. A sensitivity analysis further highlighted the correlation between elevation thresholds and
detection rates, emphasizing the importance of parameter selection for optimal results. The
integration of storm analysis enriched the understanding of flood dynamics, demonstrating how
storm intensity and duration impact soil saturation and flood risk. Increased storm intensity
correlates with heightened flood risk, while soil saturation exhibited similar trends. This research
underscores the necessity for algorithms that account for environmental variables, particularly
in disaster response scenarios. The findings confirm that GC2A effectively adapts to varying
conditions, establishing it as a valuable tool for environmental monitoring. Future research
should focus on refining the GC2A algorithm and exploring its applicability across different
domains, ensuring improved accuracy and reliability in critical applications related to flood
detection and disaster management.
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1. Introduction
1.1 Background

Flooding is one of the most destructive natural disasters, affecting millions of people annually
(1,2). It leads to significant loss of life, damage to infrastructure, and economic disruption (3).
Accurate flood prediction and timely response are crucial for mitigating these impacts. Cellular
automata (CA), a powerful modeling technique, have been widely used for simulating complex
phenomena, including flood dynamics (4). In a flood scenario, the flow of water across different
regions can be modeled using grids that evolve based on local rules and environmental conditions,
such as elevation and soil saturation. With the advent of satellite imaging and loT-enabled
monitoring systems, data-driven approaches to flood detection and management are becoming
more feasible and efficient. Combining elevation data, soil saturation levels, and real-time satellite
imagery can enhance the accuracy of flood prediction models.

1.2 Challenges
Flood modeling presents several challenges:

1. Data Accuracy: The accuracy of elevation data and soil saturation levels is critical for
reliable predictions. Inconsistent or outdated data can lead to incorrect flood forecasts.

2. Resolution and Scale: Managing large datasets from high-resolution satellite images and
extensive grid-based models requires significant computational resources, especially for
real-time applications.

3. Dynamic Conditions: Flood behavior changes rapidly due to factors like rainfall intensity,
terrain morphology, and water flow patterns. Capturing these dynamics in a timely manner
is challenging.

4. Uncertainty in Prediction: Uncertainties in weather forecasts, elevation data
inaccuracies, and unpredictable human activities can complicate flood prediction.

5. Interfacing Models and Imagery: Effectively integrating flood models with real-time
satellite imagery for visualization and interpretation adds another layer of complexity to
the design of such systems (5,6).

1.3 Contribution

This paper introduces the Grid-based Cellular Automaton Algorithm (GC2A) to tested flood
dynamics based on local elevation and soil saturation data. The algorithm also integrates satellite
imagery to visually annotate flooded areas, providing an enhanced real-time tool for flood
prediction and response. The main contributions include:
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e Development of an efficient, grid-based algorithm for real-time flood detection.

e Integration of cellular automata with real-time satellite imagery for improved flood
monitoring.

e A visualization method for marking and analyzing flooded regions on satellite images.
1.4 Objective
The primary objective of this work is to:
e Develop a flood detection algorithm using elevation and soil saturation data.
e Integrate satellite imagery to provide real-time flood visualizations.
e Optimize computational performance to ensure timely flood prediction and response.
e Enhance the accuracy and efficiency of flood grid generation.
1.5 Paper Organization

The paper is organized as follows: Section 2 discusses the related work in flood modeling and
cellular automata. Section 3 introduces the design and implementation of the GC2A algorithm.
Section 4 presents experimental results and performance evaluations. Section 5 concludes the
paper with potential future work.

2. Review of Literature

The integration of advanced data preprocessing techniques for storm and flood prediction has been
a focal point of recent research. Several studies emphasize the importance of feature selection and
deep learning models to enhance prediction accuracy.

For instance, Garg et al. (2024) proposed a hybrid deep learning network that incorporates feature
selection, leading to improved flood prediction accuracy. Their findings indicate that such
approaches significantly outperform traditional models, achieving accuracy rates as high as 95
%ly, Guo et al. (2024) developed a VMD-CNN-BILSTM model, showcasing the efficacy of
combined methodologies in daily runoff predictions. Hu et further explored the integration of
LSTM and reduced-order models to enhance flood prediction capabilities, demonstrating
promising results .

In the domain reprocessing, Kurigi and Hysa (2024) highlighted the necessity of contextual feature
extraction in flood risk mitigation efforts, emphasizing the role of image clarity and preprocessing
techniques. Mann and Gupta (2024) utp learning approaches specifically for rainfall-induced flood
predictions, reinforcing the significance of advanced algorithms. The comparative analysis across
tes illustrates a clear trend: advanced preprocessing frameworks, such as the Advanced Multi-
Dimensional Preprocessing Framework (GC2A), are pivotal for refining data integrity and
enhancing the performance of predictive models.
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2.1 Published article with techniques vs. month

The figure 1 illustrates the effectiveness of three preprocessing techniques—mean imputation,
outlier removal, and image preprocessing-over the course of a year. The monthly trends
demonstrate performance improvements achieved through these methods, highlighting their role
in enhancing data quality and contributing to more accurate analysis outcomes.

Eftectiveness of Preprocessing Technigues w=. Month

== Nlean limputation
=a— Chrtlier Reamoal
Image Preprocessimng
I I I I
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Figure 1: Effectiveness of Various Preprocessing Techniques over the Months.

(Figure 2) The GC2A architecture first preprocesses input data to enhance quality, followed by
kernel prediction, which analyzes affected regions for flood detection and provides comprehensive
output results for further assessment.
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Figure 2: System Architecture for Flood Detection and Analysis
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3. Algorithm Design

Grid-based Cellular Automaton Algorithm) GC2A

Input: Elevation and soil saturation data, thresholds, satellite image path
Output: Flood grid, annotated satellite image

1. Initialize Variables:
e Read data from CSV file.
e Define grid dimensions m X n.
e Set elevation and saturation thresholds.
2. Initialize Flood Grid:
e Create grid G of size m X n initialized to zero.
e Foreachcell (i,j) in G:

o If elevation[i][j] < threshold AND soil saturation[i][j] > threshold, then
Gli]l[j] < 1 (Flooded).

3. Process Satellite Image:
e Load and convert the image to grayscale.
e Apply binary thresholding.
e For each pixel (i, j):
o If the pixel indicates flooding, store flooded coordinates (i, j).
4. Mark Flooded Areas:
e Copy the original image.
e For each flooded coordinate (i, j):
o If (i,j) is within bounds, mark the pixel in dark yellow.
5. Run GC2A Algorithm:
e Setiterations T
e Fort=0toT —1:

o Create a temporary grid Giemp-
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o Foreachcell (i,j) in G:
= Count flooded neighbors.
= If flooded neighbors > 0, then G, [i][j] < 1.
o Update G with Giepy.
6. Results:
e Generate visualization of flooded grid G.

e Display original and marked images side by side.

4. Methods

The GC2A (Grid-based Cellular Automaton Algorithm) is a mathematical model used for
detecting and analyzing flood areas based on elevation and soil saturation data(1,2,3,4,5,6,7,8). It
employs cellular automata principles to simulate flood propagation dynamics.

4.1 Input Data Representation
e Elevation Data Matrix:

E € R™" where
E[i][j] represents the elevation at cell (i, j).

e Soil Saturation Data Matrix:

S € R™"M"  where
S[il[j]1 represents the soil saturation at cell (i, j).

e Thresholds:
T; € R (elevation threshold)
Ts € R (soil saturation threshold)

4.2 Flood Grid Initialization
e Flood Grid:

G € {0,1}™*" where
Gli]l[j]1 =0 (not flooded)
or Gli][jl]=1 (flooded).

e Initialization:

Glillj1 =0,v(i,j) € [0,m — 1] x [0,n — 1].

95



Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbom-mib-2025-376
4.3 Flood Detection Condition

ara _ 1 ifE[i][j] < Tg and S[i][j] > T.
G[l][]]_{o otherwise ’ ’

4.4 Moore Neighborhood Definition

N@GjH)={ (-1,j-1),
(i—1,)),
(i—-1,j+1),
G,j-1,
G,j+1),
(i+1,j-1),
@+15,
(i+1,j+1)}

4.5 Count of Flooded Neighbors
C(@i,j) = Z G [x][y]
(x,y)EN(,J)

4.6 GC2A lteration Process
e |terative Update:

(1 ifC(i,j) >0
Grempli1lj] = {G[i][j] otherwise

e Update Rule:
G < Giemp
4.7 Flood Propagation Dynamics
Each cell (i, j) can become flooded if at least one of its neighbors is flooded, reflecting how water
spreads from already flooded areas(5,6,7,8).
5.Storm Analysis

Incorporating storm analysis, we define additional parameters and conditions to assess the impact
of storm events on flood propagation:

5.1 Storm Intensity and Duration
e Storm Intensity:

I, € R (storm intensity)

e Storm Duration:
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Ds € R (storm duration in hours)

5.2 Impact on Soil Saturation
The soil saturation during a storm can be represented as:

S'Tillj1 = S + fUs, Ds)
where f is a function representing
saturation increase due to rainfall.

5.3 Flood Detection Condition
The revised flood detection condition during a storm is given by:

ara _ (1 ifE[i][j] < Ty and S'[i][j] > T.
GLiIY] _{0 otherwise ’ ’

5.4 Flooded Grid Visualization

VIl = {Flooded Color ifG[i][j]=1
~ Original Color if G[i][j]1=0

5.5Annotated Satellite Image

The original satellite image is modified to highlight flooded regions based on G.

6 .Output Results
The final outputs consist of:
e The flooded grid G (Table 1), represented as a binary matrix.

e An annotated image highlighting flooded areas, which is crucial for decision-making and
emergency response, showing only the five infected areas.

Table 1: Infected area of elevation and soil saturation data

Cell Index | Elevation (m) | Soil Saturation
0 45 0.3
1 55 0.6
2 30 0.8
3 40 0.5
4 50 0.4

The elevation and soil saturation data (Table 2) indicate varied terrain and moisture levels. The
GC2A grid shows that all cells are flooded, suggesting widespread flooding due to low elevation
and high soil saturation. Only five regions are identified as infected, as listed below.
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Table 2 :GC2A Grid Result (Flooded Areas)
0|1|2|3|4
O(1(1/1/1|1
1711|1111
211]1]1|1|1
3(1(1(1|1|1
411(1(1|1|1
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Figure 3 :Image data from Indian landscape. Data source: Indian NITI Aayog.

The heatmap (Figure 3) visually represents flood-prone areas, with darker regions indicating
higher flood risk. It highlights how low elevation and high soil saturation contribute to widespread
flooding across the grid.
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6.2 Flood predicted areas

Marked Flooded Areas
o

Figure 4: Image data from Indian landscape. Data source: Indian NITI Aayog.

The highlighted flood map (Figure 4) visually emphasizes regions prone to flooding based on
threshold values for elevation and soil saturation. Dark yellow pixels represent flooded areas
detected by the GC2A algorithm, which propagates flooding based on initial conditions and
neighboring cell states. This approach enhances accuracy in flood risk identification for predictive
analysis and disaster mitigation planning.

7. Summary

The GC2A model detects flood-prone areas using elevation and soil saturation data, enhanced by
storm parameters like intensity and duration. By defining thresholds and iterating flood
propagation dynamics, it generates a flooded grid and visualizations. The results inform decision-
making and emergency responses, improving flood risk identification and disaster mitigation
strategies.

8. Result Analysis

The primary objective of this study is to implement the GC2A for flood detection and analysis
based on elevation and soil saturation data. This section analyzes the results obtained from the
algorithm, highlighting the effectiveness of the flood detection process, its sensitivity to input
parameters, and its applicability in real-world scenarios.

8.1 Handling Missing Values

The missing values in the numerical dataset were effectively imputed using the mean of each
feature.

Table 3 : Data Before and After Imputation

Feature Before Imputation | After Imputation
Elevation 150.0 150.0
Soil Saturation | 0.65 0.65
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Feature Before Imputation | After Imputation
Precipitation NaN 125
Temperature 30.0 30.0
Wind Speed NaN 15.0

In the GC2A algorithm, missing values were imputed using the mean of each feature (Table 3),
enhancing data completeness and ensuring accurate analysis. This method preserves trends,
reducing bias in storm and flood datasets (1,4,5,6).

8.2 Outlier Detection and Removal
Outliers identified based on the defined threshold were systematically removed.

Table 4 : Data Before and After Outlier Removal

Original Value | After Outlier Removal
10.0 10.0
20.0 20.0
100.0 20.0
30.0 30.0

In GC2A, outliers were detected and removed (Table 4, preventing skewed analysis. This ensures
that the data reflects typical patterns, improving both model accuracy and generalization during
training and testing phases(1,4,5,6).

8.3 Feature Scaling

The standardization of numerical features yielded a transformed dataset.

Featune Scalleg: Belore asd Adter Standardization

Figure 5: Feature Scaling Example: Before and After Standardization.

In GC2A, feature scaling via standardization transformed the dataset, as shown in Figure 5. This
process adjusts numerical values, ensuring that features contribute equally to the model and
enhancing accuracy (3,4,5,6).
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8.4 Dimensionality Reduction (Optional)

Dimensionality reduction techniques ( Principle Component Analysis) reduced the feature space
while retaining significant variance.

8.5 Image Data Preprocessing:
8.5.1 Image Resizing

All images were resized to uniform dimensions of 224 x 224 pixels (1,2,3,4) using the bilinear
interpolation algorithm(BIA). This resizing step ensures consistency in image input dimensions,
reduces computational complexity, and enhances model performance by standardizing feature
representation.

Image Hesizing: COriginal ve. Resized Images

250 T
—a— Uriginal Imags

o

1500 [~ _

100

Height [pixels)

1] 5 L0y 150 200 250
Width (pixels)

Figure 6 :Image Resizing: Original vs. Resized Images. Resizing images is essential for ensuring
consistency, reducing computational load, preserving features, and enhancing model
performance, making it a critical preprocessing step in machine learning applications.

8.5.2 Noise Reduction

The application of a denoising function resulted in visibly cleaner images (1,2,3,4).

lisage: Maolse Bodwction: Before amd After Diossodelieg
1. MM -

Noby Image

Ditacibind Innage:

RITT] -,

Plxel Intensicy

101



Musik in bayern

ISSN: 0937-583x Volume 90, Issue 1 (Jan -2025)

https://musikinbayern.com DOI https://doi.org/10.15463/gfbom-mib-2025-376
Figure 7 : Image Noise Reduction: Before and After Denoising. The denoising function effectively
reduces pixel noise, enhancing image clarity and analysis accuracy, crucial for applications in
strom and flood imaging Figure

8.5.3 Feature Enhancement

Enhanced features improved the representation of critical image attributes(1,2,3,4).

Feature Eshaneement: Origlsal vs. Eshanced Features
12N
1.00n |
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P - \R\ £
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- v )
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| a LiM 150 1] an4
Plxel Intensicy

Figure 8 : Feature Enhancement: Original vs. Enhanced Features.In GC2A, feature enhancement
improved the representation of critical image attributes, as shown in Figure 8. Enhanced features
provided better contrast and detail, allowing for more accurate image analysis and
processing.(5,6).

8.6 Performance comparison with baseline algorithms

To provide a clearer understanding of the comparative performance of various preprocessing
algorithms, Table 5 summarizes their characteristics and results.

Table 5: Comparison of Preprocessing Algorithms

Algorithm

Weaknesses] GC2ZA

Simple
Imputa-
tion

lgnores out-
liers

GO2A improves accu-
racy with outlier detec-
tion.

Median
Filtering

Maw
features

lose

GC2A retains critical
features with denois-

ng.

PCA

Sensitive to
outliers

GC2A  preserves vark-
ance more effectively.

Diata Aug-

Introduces

GO2A provides contex-

tion

mentation | variations tual angmentation.
Shallow Miss=es GC2A captures
Feature deeper fea- | richer representa-
Extrac- tures tions through CNNs.

Table 5 highlights how GC2A addresses weaknesses in traditional preprocessing algorithms.
GC2A excels in outlier detection, feature preservation, and contextual data augmentation, offering
improved accuracy and deeper feature extraction(1,4,5,6).
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Figure 9 : Comparative Model Accuracy across Different Preprocessing Algorithms.

Figure 9 illustrates the comparative accuracy of different Al models, including Random Forest,
Support Vector Machine, and Logistic Regression, across preprocessing algorithms. GC2A
achieves the highest accuracy at 95%, significantly outperforming traditional methods like Mean
and Median(9,10)..

8.7 GC2A metrics analysis with baseline algorithm

The GC2A framework was evaluated using various performance metrics, including PSNR and
SSIM, to assess the effectiveness of the preprocessing techniques(9,10)..

Table 6 :Result Analysis for GC2A

S.No | Algorithms PSNR | SSIM
1 GC2A 925 |93
2 Gaussian Blur 90.8 |91
3 Median Filtering 90.2 |92
4 Non-local Mean Denoising | 89.5 |91
5 Wavelet Denoising 89.1 |90

Table 6 highlights GC2A’s superior performance, with the highest PSNR and SSIM, indicating
improved image quality and structural preservation over Gaussian blur and wavelet denoising
techniques(1,2,3,4).

8.8 Flood Detection Results

The flood detection results are summarized Table 7, showcasing the performance of the GC2A
algorithm under varying thresholds and storm conditions(5,6,10).
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Table 7: Flood Detection Performance Metrics

Thresholds| True Pos- | False Preci Recall
itive Rate | Positive SI0TL
Rate
Te = | .85 .15 .58 (.85
dm,Te =
300
Tg = | .90 .10 0.91 (.90
dm,Te =
25%

8.8.1 Quantitative Metrics

The performance of the GC2A algorithm was evaluated using standard metrics. As observed Table
7 , the True Positive Rate increased from 0.85 to 0.90 as the thresholds for elevation and soil
saturation were adjusted. This indicates a higher sensitivity in detecting flooded areas under more
stringent conditions, thereby minimizing false positives (5,9,10).

8.9 Qualitative Assessment

Figure 10 illustrates the annotated satellite images before and after applying the GC2A algorithm.
The marked flooded areas correspond closely with actual flood reports, demonstrating the
algorithm’s reliability. Visual inspection reveals that areas prone to flooding were accurately
identified, which is critical for emergency response efforts(5,6,7,8,9,10).

Area Actually Flooded

Flooded Area

Figure 10 :Annotated satellite images showing flooded areas detected by the GC2A algorithm.
8.10 Sensitivity Analysis

The robustness of the GC2A algorithm was tested through a sensitivity analysis. Variations in the
elevation threshold from 4 m to 6 m resulted in significant changes in the flood detection rate, as
depicted in Figure 11. This finding underscores the importance of carefully selecting input
parameters to optimize flood detection capabilities (9,10).
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Sensitivity Analysis of Flood Detection Algorithm
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Figure 11: Sensitivity analysis of the flood detection algorithm based on varying input parameters.
8.11 Storm Intensity vs. Duration

Figure 12 shows that as storm duration increases, storm intensity rises non-linearly, suggesting a
rapid escalation in extreme weather events beyond a threshold duration (8,9,10).

100
D
= 6
RV
&

20

—e— Storm Intensity
U | | |
{0 1 10 15 20 25 a0

Storm Duration (honrs)

Figure 12 : Storm Intensity vs. Duration

8.12 Soil saturation vs. Storm duration

In Figure 13 , soil saturation increases rapidly after 15 hours of storm duration, nearing full
saturation, which leads to heightened flood risk in affected areas (5,6,7,8,9,10).
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Figure 13 :Soil Saturation vs. Storm Duration
8.13 Flood Risk vs. Storm Intensity

Figure 14 demonstrates that flood risk accelerates significantly after storm intensity exceeds 60%,
indicating a critical point for emergency flood management interventions (5,6,7,8,9,10).

100

Flood Risk (%)
T

—a— Flood Risk

[ )| 40 il sl 100
Storm Intensity

Figure 14 : Flood Risk vs. Storm Intensity

9. Discussion

The results obtained from the performance comparison with baseline algorithms (Table 5) indicate
that GC2A effectively addresses several weaknesses inherent in traditional preprocessing methods.
For instance, while simple imputation ignores outliers, GC2A enhances accuracy by incorporating
outlier detection strategies. The observed model accuracies for various algorithms underline the
robustness of GC2A in maintaining key data features: GC2A’s accuracy of 95% surpasses the
accuracies of the mean (75%), median (80%), and PCA (82%) algorithms, suggesting its efficacy
in preserving essential characteristics of the data.

In terms of image quality, GC2A achieved a PSNR of 92.5 and an SSIM of 93, reflecting its ability
to enhance image fidelity and structural integrity compared to alternative methods, such as
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Gaussian Blur (PSNR: 90.8, SSIM: 91) and Wavelet Denoising (PSNR: 89.1, SSIM: 90). These
results affirm the superior performance of GC2A in both quantitative and qualitative assessments.

Flood detection results further validate the efficacy of the GC2A algorithm. The true positive rate
increased from 85% to 90% when adjusting thresholds for elevation and soil saturation,
demonstrating heightened sensitivity in detecting flooded areas, thereby reducing false positives.
The qualitative assessment, supported by annotated satellite images (Figure 10), illustrates that the
detected areas correspond closely with actual flood reports, underscoring the reliability of GC2A
in emergency response applications.

Sensitivity analysis (Figure 11) highlights the impact of parameter selection on flood detection
rates. The direct relationship between elevation thresholds and detection rates—indicating an
increase from 85% at 4 m to 94% at 6 m—underscores the importance of carefully choosing input
parameters to optimize algorithm performance.

9.1 Analysis of storm

The analysis of storm intensity, duration, and soil saturation provides crucial insights into flood
risk management:

e Storm Intensity and Duration: Longer storms with higher intensities are shown to have
a more significant impact on both soil saturation and flood risk. The relationship between
these variables, as visualized in Figure 12, indicates that storms exceeding certain
thresholds may pose serious flood threats, especially in vulnerable areas with limited water
absorption capacity.

e Soil Saturation: As depicted in Figure 13, soil becomes fully saturated as storm intensity
and duration increase, limiting the ground’s ability to absorb additional rainfall. Once the
soil reaches full saturation, excess water will contribute directly to surface runoff,
heightening the probability of flooding in those areas.

e Flood Risk: The combined effect of storm intensity on flood risk (Figure 14) shows a non-
linear relationship, with the risk increasing substantially after a certain threshold. Effective
flood management systems should consider this threshold when planning disaster
prevention and preparedness strategies.

9.2 Limitations and Future Work

While the GC2A algorithm shows promising results, limitations include reliance on the quality of
input data and potential computational inefficiencies in larger datasets. Future research should
focus on optimizing the algorithm for scalability and integrating additional data sources such as
real-time rainfall measurements to further improve detection accuracy.

10. Conclusion

The GC2A preprocessing algorithm significantly enhances model performance in both image
processing and flood detection tasks, achieving a superior accuracy of 95 % along with improved
PSNR and SSIM values. These advancements effectively address the limitations of traditional
preprocessing techniques. The flood detection results, with a true positive rate of 90 % and strong
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qualitative assessments, demonstrate the algorithm’s robustness in real-world applications,
particularly in disaster management.

The integration of storm analysis further highlights the algorithm’s relevance, as storm intensity
and duration are shown to directly affect flood propagation. Figures 12, 13, 14 collectively
illustrate how increasing storm intensity and extended durations significantly elevate soil
saturation and flood risk. This reinforces the critical role of accurate storm modeling in flood
detection systems.

Moreover, sensitivity analysis underscores the importance of optimized parameter selection.
Minor adjustments in both preprocessing and storm-related thresholds can substantially impact
detection rates, emphasizing the need for precision. Future research should focus on refining the
GC2A algorithm and enhancing storm prediction models to improve accuracy and applicability
across various domains. This approach holds promise for more reliable solutions in disaster
response, environmental monitoring, and other critical areas.

Data Availability

e The CSV dataset, self-tested, is publicly available on GitHub at the following URL.
https://github.com/Divya-B-ux/flood_strom_GC2A.qgit.

e Spatial data from the https://iced.niti.gov.in/climate-and-environment/climate-
variability/rainfallindian Meteorological Department, including rainfall (2020-2024).

e Elevation data is available on https://www.mosdac.gov.in/MOSDAC.

e Soil saturation data can be accessed from https://bhuvan-
app3.nrsc.gov.in/data/download/index.phpBhuvan.
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